Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
J Food Sci ; 88(11): 4544-4559, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37812169

RESUMEN

Numerous biochemical processes are involved in fruit maturation, such as ethylene production, phenolic compounds accumulation, and antioxidant enzymes production. Therefore, the aim of the present work was the evaluation of ethylene production, and the bioactive compounds change in the exocarp and mesocarp of five peach [Prunus persica (L.)] cultivars during three ripening stages, (1) early ripening (ER), (2) commercial maturation, and (3) full ripening (FR) in order to establish the best stage to harvest each peach variety. The experiment was applied to five peach cultivars growing within an arid bioclimatic environment covering the whole peach production season: two early cultivars, Flordastar and Early Maycrest; one variety of mid-season Rubirich; and two late cultivars, Sweet Cap and O'Henry. Ethylene production, phenolic compounds, and oxidative stress through antioxidant enzyme activities (catalase, peroxidases [PODs] Class III, and ascorbate-POD), malondialdehyde (MDA), and hydrogen peroxide (H2 O2 ) production were determined in the exocarp and mesocarp of peach fruits. The results showed a significant increase in ethylene production during fruit ripening. However, a parallel decrease in the level of phenolic compounds as well as in antioxidant enzyme activities was observed. The FR stage was also characterized by an important accumulation of MDA and H2 O2 . In conclusion, important changes in fruit quality associated with the production level of ethylene were observed. Fruits harvested during the ER stage would be more suitable for delivering to distant markets and more appreciated by the peach industries due to their highest phenolic acid content, best antioxidant enzyme activities, and lowest oxidative stress indicator.


Asunto(s)
Prunus persica , Antioxidantes/análisis , Etilenos/análisis , Frutas/química , Proteínas de Plantas/análisis
2.
Environ Pollut ; 334: 122223, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37481031

RESUMEN

Ozone concentrations in Houston, Texas, are among the highest in the United States, posing significant risks to human health. This study aimed to evaluate the impact of various emissions sources and meteorological factors on ozone formation in Houston from 2017 to 2021 using a comprehensive PMF-SHAP approach. First, we distinguished the unique sources of VOCs in each area and identified differences in the local chemistry that affect ozone production. At the urban station, the primary sources were n_decane, biogenic/industrial/fuel evaporation, oil and gas flaring/production, industrial emissions/evaporation, and ethylene/propylene/aromatics. At the industrial site, the main sources were industrial emissions/evaporation, fuel evaporation, vehicle-related sources, oil and gas flaring/production, biogenic, aromatic, and ethylene and propylene. And then, we performed SHAP analysis to determine the importance and impact of each emissions factor and meteorological variables. Shortwave radiation (SHAP values are ∼5.74 and ∼6.3 for Milby Park and Lynchburg, respectively) and humidity (∼4.87 and ∼4.71, respectively) were the most important variables for both sites. For the urban station, the most important emissions sources were n_decane (∼2.96), industrial emissions/evaporation (∼1.89), and ethylene/propylene/aromatics (∼1.57), while for the industrial site, they were oil and gas flaring/production (∼1.38), ethylene/propylene (∼1.26), and industrial emissions/evaporation (∼0.95). NOx had a negative impact on ozone production at the urban station due to the NOx-rich chemical regime, whereas NOx had positive impacts at the industrial site. The study's findings suggest that the PMF-SHAP approach is efficient, inexpensive, and can be applied to other similar applications to identify factors contributing to ozone-exceedance events. The study's results can be used to develop more effective air quality management strategies for Houston and other cities with high levels of ozone.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Humanos , Ozono/análisis , Contaminantes Atmosféricos/análisis , Texas , Meteorología , Etilenos/análisis , Aprendizaje Automático , Monitoreo del Ambiente/métodos , Compuestos Orgánicos Volátiles/análisis , China , Emisiones de Vehículos/análisis
3.
Int J Biol Macromol ; 245: 125550, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37356689

RESUMEN

Rapid ripening and softening due to cell wall polysaccharide degradation and disassembly pose major challenges in extending fruit storability. This study aimed to examine the efficacy of Opuntia ficus indica mucilage (OFIM) edible coating in minimizing softening in bananas under retail conditions. Mucilage was extracted from freshly harvested prickly pear cladodes and dried into a powder. Phenolic compounds in OFIM powder were quantified using liquid chromatography-mass spectrometry (LC-MS). OFIM concentrations (1, 2 and 3 % (w/v)) were prepared, and their physicochemical properties were examined. The prepared coatings were applied to harvested banana fruit by dipping and stored at room temperature for 12 days. During the experiment, several parameters were measured, including fruit weight loss, total soluble solids (TSS), titratable acidity (TA), peel color, pulp firmness, ethylene production, respiration rate, ion leakage, malondialdehyde (MDA) content, total chlorophyll and carotenoids, chlorophyll-degrading enzymes, protopectin content and water-soluble pectin (WSP) and softening-related enzymes in the peel. Results showed that mucilage treatments effectively delayed cell wall and chlorophyll degradation, as well as carotenoid accumulation, thus inhibiting ripening-associated processes compared to control fruit. OFIM-treated fruit exhibited significantly higher firmness, chlorophyll content, and TA, lower TSS content, ethylene production, respiration rate, MDA concentration, ion leakage and protopectin content than uncoated fruit. This suggests that OFIM edible coating has the potential to maintain quality and extend the shelf life of bananas by suppressing softening enzymes during storage.


Asunto(s)
Musa , Opuntia , Pared Celular/metabolismo , Clorofila/metabolismo , Etilenos/análisis , Frutas/química , Musa/metabolismo , Opuntia/química , Polisacáridos/farmacología , Polvos/metabolismo
4.
Environ Sci Technol ; 57(22): 8365-8372, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37220668

RESUMEN

Micro/nanoplastics have emerged as global contaminants of serious concern to human and ecosystem health. However, identification and visualization of microplastics and particularly nanoplastics have remained elusive due to the lack of feasible and reliable analytical approaches, particularly for trace nanoplastics. Here, an efficient surface-enhanced Raman spectroscopy (SERS)-active substrate with triangular cavity arrays is reported. The fabricated substrate exhibited high SERS performance for standard polystyrene (PS) nanoplastic detection with size down to 50 nm and a detection limit of 0.001% (1.5 × 1011 particles/mL). Poly(ethylene terephthalate) (PET) nanoplastics collected from commercially bottled drinking water were detected with an average mean size of ∼88.2 nm. Furthermore, the concentration of the collected sample was estimated to be about 108 particles/mL by nanoparticle tracking analysis (NTA), and the annual nanoplastic consumption of human beings through bottled drinking water was also estimated to be about 1014 particles, assuming water consumption of 2 L/day for adults. The facile and highly sensitive SERS substrate provides more possibilities for detecting trace nanoplastics in an aquatic environment with high sensitivity and reliability.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Humanos , Microplásticos , Plásticos/análisis , Agua Potable/análisis , Tereftalatos Polietilenos , Espectrometría Raman , Reproducibilidad de los Resultados , Ecosistema , Contaminantes Químicos del Agua/análisis , Poliestirenos , Etilenos/análisis
5.
BMC Microbiol ; 22(1): 239, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36199024

RESUMEN

BACKGROUND: Fruit bagging is an effective technique for fruit protection in the orchard management. Bagging can create a micro-environment for fruit growth and affect fruit quality during storage, in which the diversity of microorganisms may play an important role. Therefore, various methods including biochemistry, analytical chemistry, and bioinformatics methods were used to reveal the influences of fruit bagging on postharvest fruit quality, physiological characters, decay and surface fungal community of 'Yali' pear fruit were investigated in this study. RESULTS: Fruit bagging significantly decreased the postharvest decay after 15 days of ambient storage. There were no significant differences in fruit firmness, titratable acid and ethylene production rate between the fruit-bagging and non-bagging group after 15 days of storage, while the soluble solids contents (SSC) and respiration rate in non-bagging fruit was significantly higher than that in fruit-bagging after 15 days of storage. Furthermore, the surface microbes of pear were collected and determined by the new generation sequencing technology. The alpha diversity of fungi in non-bagging fruit decreased significantly after 15 days of storage, while there were no significant changes in bagging fruit. Ascomycota and Basidiomycota were the two major phyla detected in the bagging fruit, and the dominant fungal genera were Alternaria (23.7%), Mycosphaerella (17.25%), Vishniacozyma (16.14%), and Aureobasidium (10.51%) after 15 days of storage. For the non-bagging pear, Ascomycota was the only phylum detected, and the dominant genera was Pichia (83.32%) after 15 days of storage. The abundance of Pichia may be regarded as the biomarker to indicate the degree of fruit decay. CONCLUSIONS: This study showed that fruit bagging could significantly reduce postharvest fruit decay and respiration rate of 'Yali' pear. Significant differences were found in fungal composition between bagging and non-bagging pear after storage for 0 or 15 days. Fruit bagging maintained the diversity of fungi on the fruit surface, increased the abundance of non-pathogenic fungi, and even antagonistic fungi such as Aureobasidium, Vishniacozyma, and Mycosphaerella. A reduction in the abundance of pathogenic fungi and incidence of postharvest decay during the storage of 'Yali' pear were also recorded. In conclusion, fruit-bagging changed the fungal diversity on fruit surface of 'Yali' pear, which had significant effect on reducing postharvest fruit decay, and thus prolong the storage period of 'Yali' pears. The future thrust of this study will focus on the isolation of fungi or bacteria from pear fruit surface and identify their roles in causing fruit decay and changing fruit quality during storage.


Asunto(s)
Micobioma , Pyrus , Alternaria , Etilenos/análisis , Frutas/química , Pyrus/química
6.
Environ Res ; 215(Pt 2): 114404, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36154862

RESUMEN

Plastic materials have been variously exposed to arable land for decades through soil mulching, plastic housing, and sewage sludge composting. Their mechanical abrasion and biochemical degradation induce the proliferation of myriad microplastics that can further be broken into smaller nano-sized pieces that can be further accumulated in living organisms (including soil invertebrates, fruits, and vegetables); they can also be widely dispersed in neighboring environments. Despite the intensive use of plastics in agriculture, little is known about their origin of occurrence and environmental fate, especially with a size below 100 µm. Therefore, in this study, microplastics with a size in the range of 20-2,000 µm were investigated in soil samples obtained from three different conditions of land uses: tilled with plastic mulch, bare ground (i.e., uncultivated land), and in between the greenhouses of the farmland D located in Namyangju-si, Gyeonggi-do, Republic of Korea. They were primarily identified using Fourier transform infrared (FT-IR) spectroscopy coupled with a microscope. Prior to performing the analysis, microplastic extraction from the soil samples was validated using standardized high-density polyethylene (HDPE) microplastics of various sizes ranging from 20 to 500 µm. As a result, the number of microplastics was estimated to be (241 ± 52), (195 ± 37), and (306 ± 56) particles per kg of dry soil in tillage, bare ground, and in between greenhouses, respectively. They consist of polyethylene (PE), polypropylene (PP), and poly(ethylene terephthalate) (PET), which are the basic constituents of commonly used agricultural products. The particle size distribution depends on the type of plastic, the time elapsed since their usage, and the degree and duration of environmental exposure; the plastic particle sizes were smaller in tillage and around the greenhouses since agricultural films have been weathered for a long time, whereas those with relatively large sizes were found in the uncultivated.


Asunto(s)
Microplásticos , Plásticos , Agricultura , Monitoreo del Ambiente , Etilenos/análisis , Análisis de Fourier , Plásticos/análisis , Polietileno , Polipropilenos/análisis , Aguas del Alcantarillado/análisis , Suelo/química , Espectroscopía Infrarroja por Transformada de Fourier
7.
Adv Healthc Mater ; 11(20): e2200941, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904257

RESUMEN

3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.


Asunto(s)
Neuroblastoma , Andamios del Tejido , Humanos , Materiales Biocompatibles , Diferenciación Celular , Proliferación Celular , Colágeno/química , Etilenos/análisis , Matriz Extracelular/química , Ácido Hialurónico , Laminina , Polímeros , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Microambiente Tumoral
8.
Chem Commun (Camb) ; 58(16): 2750-2753, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35119446

RESUMEN

Prebiotic sugars are thought to be formed on primitive Earth by the formose reaction. However, their formation is not fully understood and it is plausible that key intermediates could have formed in extraterrestrial environments and subsequently delivered on early Earth by cometary bodies. 1,2-Ethenediol, the enol form of glycolaldehyde, represents a highly reactive intermediate of the formose reaction and is likely detectable in the interstellar medium. Here, we report the identification and first characterization of (Z)-1,2-ethenediol by means of rotational spectroscopy. The title compound has been produced in the gas phase by flash vacuum pyrolysis of bis-exo-5-norbornene-2,3-diol at 750 °C, through a retro-Diels-Alder reaction. The spectral analysis was guided by high-level quantum-chemical calculations, which predicted spectroscopic parameters in very good agreement with the experiment. Our study provides accurate spectral data to be used for searches of (Z)-1,2-ethenediol in the interstellar space.


Asunto(s)
Carbohidratos/química , Etilenos/análisis , Estructura Molecular , Prebióticos , Estereoisomerismo
9.
J Sci Food Agric ; 102(11): 4589-4598, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35170048

RESUMEN

BACKGROUND: A shelf-life that is too short is the main problem with strawberries. Nano-TiO2 can catalyze and oxidize ethylene under ultraviolet (UV) light irradiation to eliminate its ripening effect on fruits and prolong the freshness period. RESULTS: In this work, nano-TiO2 modified by methacryloxy propyl trimethoxyl silane (KH570) was blended with low-density polyethylene (LDPE) to prepare modified atmosphere packaging (MAP), and the influence of TiO2 content on films was analyzed before and after UV treatment. The results show that the modified nano-TiO2 (M-TiO2 ) can be uniformly distributed in LDPE, improving its mechanical strength, hydrophobicity, oxygen barrier and UV shielding properties. A modified atmosphere with low ethylene, low O2 and high CO2 can be created to inhibit the ripening and spoilage of strawberries. The weight loss rate of fruit can be effectively reduced. The tendency of fruit firmness decline and nutrient loss can be slowed and stabilized, contributing to controllable shelf-life. Excellent freshness preservation function can be realized without special UV treatment. CONCLUSION: Since UV treatment is rare in actual storage and transportation, LDPE/M-TiO2 composite film has practical value as MAP for strawberry and similar non-climacteric fruits. © 2022 Society of Chemical Industry.


Asunto(s)
Fragaria , Atmósfera , Etilenos/análisis , Fragaria/química , Frutas/química , Oxígeno/análisis , Polietileno
10.
Angew Chem Int Ed Engl ; 60(40): 21934-21942, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34291549

RESUMEN

Ethylene (ET) is an important gaseous plant hormone. It is highly desirable to develop fluorescent probes for monitoring ethylene in living cells. We report an efficient RhIII -catalysed coupling of N-phenoxyacetamides to ethylene in the presence of an alcohol. The newly discovered coupling reaction exhibited a wide scope of N-phenoxyacetamides and excellent regioselectivity. We successfully developed three fluorophore-tagged RhIII -based fluorogenic coumarin-ethylene probes (CEPs) using this strategy for the selective and quantitative detection of ethylene. CEP-1 exhibited the highest sensitivity with a limit of detection of ethylene at 52 ppb in air. Furthermore, CEP-1 was successfully applied for imaging in living CHO-K1 cells and for monitoring endogenous-induced changes in ethylene biosynthesis in tobacco and Arabidopsis thaliana plants. These results indicate that CEP-1 has great potential to illuminate the spatiotemporal regulation of ethylene biosynthesis and ethylene signal transduction in living biological systems.


Asunto(s)
Arabidopsis/química , Etilenos/análisis , Colorantes Fluorescentes/química , Animales , Células CHO , Cricetulus , Estructura Molecular
11.
J Food Sci ; 86(7): 2872-2885, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34146411

RESUMEN

Enzyme-based time-temperature integrators (TTIs) were applied to indicate the ripeness of plastic-container-packaged kiwifruit. The hypothesis was that the ethylene gas production, an indication of kiwifruit ripeness, depends on the time-temperature history. The market-purchased, unripe kiwifruit was assumed to be stored in a plastic container to ripen at home, as common practice in Korea. The kinetics of ethylene gas production and TTI color change was found to be suitable for the indication. The Arrhenius activation energy (Ea ) of the ethylene gas production and color changes of lipase-, amylase-, and laccase-based TTIs were 41.60 ± 10.87 kJ/mol, and 42.76 ± 9.57, 100.28 ± 6.84, and 30.49 ± 4.41 kJ/mol, respectively. Kiwifruit firmness was also tested as a practical, major quality factor. The Ea of the firmness changes was 39.66 ± 4.64 kJ/mol. In scenarios tests, the firmness could be most accurately predicted from the lipase-based TTI color. Overall, the lipase-based TTI was found to be the best in terms of the similarity of the Ea and the prediction accuracy. PRACTICAL APPLICATION: Currently, there is no commercially available indicator that can determine the ripeness of packaged kiwifruit. Although an ethylene gas indicator is possible, it has been difficult to commercialize because the gas may leak in the package. An indicator on plastic containers with kiwifruit, as is common in Korea, has been developed using a conventional time-temperature integrator (TTI). The hypothesis was that the production of ethylene gas, indicating kiwi ripening, is also dependent on the time-temperature history. It was found that the TTI color change over time was suitable for judging suitable kiwifruit hardness, a major kiwifruit ripeness index.


Asunto(s)
Actinidia/crecimiento & desarrollo , Etilenos/análisis , Frutas/crecimiento & desarrollo , Plásticos/química , Actinidia/química , Frutas/química , Cinética , República de Corea , Temperatura , Factores de Tiempo
12.
Opt Express ; 29(8): 12381-12397, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984999

RESUMEN

We present a multi-species trace gas sensor based on a fast, compact home-built Fourier transform spectrometer (FTS) combined with a broadband mid-infrared supercontinuum (SC) source. The spectrometer covers the spectral bandwidth of the SC source (2 - 4 µm) and provides a best spectral resolution of 1 GHz in 6 seconds. It has a detection sensitivity of a few hundred of ppbv Hz-1/2 for different gas species. We study the performance of the developed spectrometer in terms of precision, linearity, long-term stability, and multi-species detection. We use the spectrometer for measuring fruit-produced volatiles under different atmospheric conditions and compare the performance with a previously developed scanning grating-based spectrometer.


Asunto(s)
Gases/análisis , Malus/química , Malus/fisiología , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Acetaldehído/análisis , Acetatos/análisis , Acetona/análisis , Diseño de Equipo , Etano/análisis , Etanol/análisis , Etilenos/análisis , Análisis de Fourier , Metanol/análisis , Espectroscopía Infrarroja por Transformada de Fourier/métodos
13.
Food Chem ; 349: 129004, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33556724

RESUMEN

The purpose of this study was to explore the effects of 1-MCP on the sprouting and preservation of ginger rhizomes during storage at room temperature. Ginger rhizomes were treated with 1 µL L-1 1-methylcyclopropene (1-MCP) and stored at 23 ± 0.2 °C. Our data showed that application of 1-MCP reduced the rate of sprouting during storage compared with the control rhizome. Respiration rate and the reducing sugar content were also reduced following 1-MCP treatment, while the starch content increased. 1-MCP treatment increased the total phenol content and inhibited polyphenol oxidase (PPO) activity. 1-MCP treatment was also associated with a higher ascorbic acid content but a reduced crude fiber content. The generation of superoxide anion free radicals (O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) was lower following 1-MCP treatment, while the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were higher compared with the controls. These results suggested that application of 1-MCP could reduce sprouting rates, decrease the accumulation of ROS, and maintain the quality of ginger rhizomes during storage at room temperature. It would be useful to further explore the role and mechanisms of action of ethylene in regulating the sprouting of ginger rhizomes.


Asunto(s)
Ciclopropanos/farmacología , Conservación de Alimentos/métodos , Rizoma/efectos de los fármacos , Rizoma/crecimiento & desarrollo , Temperatura , Zingiber officinale/efectos de los fármacos , Zingiber officinale/crecimiento & desarrollo , Etilenos/análisis , Zingiber officinale/química , Peróxido de Hidrógeno/análisis , Malondialdehído/análisis , Fenoles/análisis
14.
Food Chem ; 334: 127615, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32711261

RESUMEN

In this review article, the state of the art of gas sensors based on quartz crystal microbalance (QCM) for fruit freshness detection is overviewed from the aspects of development history, working principle, selection and modification of sensitive materials, and volatile organic compounds detection of fruits. According to the characteristics of respiratory intensity at the stage of fruit ripening, fruits can be divided into respiration climacteric fruits and non-climacteric fruits. In recent years, research has mainly focused on respiration climacteric fruits, such as bananas and mangoes, etc., while related studies on non-climacteric fruits have been rarely reported, except for citrus fruits. The preparation methods and structure design of sensitive materials based on physical/chemical adsorption mechanisms are further discussed according to the odor components that affect the freshness of fruits, namely alkenes, esters, aldehydes and alcohols.


Asunto(s)
Análisis de los Alimentos/métodos , Frutas/química , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Compuestos Orgánicos Volátiles/análisis , Adsorción , Alcoholes/análisis , Aldehídos/análisis , Ésteres/análisis , Etilenos/análisis , Análisis de los Alimentos/instrumentación , Calidad de los Alimentos , Gases/análisis , Odorantes/análisis , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación
15.
Plant J ; 105(2): 542-557, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33231903

RESUMEN

Plant hormones play important roles in plant growth and development and physiology, and in acclimation to environmental changes. The hormone signaling networks are highly complex and interconnected. It is thus important to not only know where the hormones are produced, how they are transported and how and where they are perceived, but also to monitor their distribution quantitatively, ideally in a non-invasive manner. Here we summarize the diverse set of tools available for quantifying and visualizing hormone distribution and dynamics. We provide an overview over the tools that are currently available, including transcriptional reporters, degradation sensors, and luciferase and fluorescent sensors, and compare the tools and their suitability for different purposes.


Asunto(s)
Técnicas Biosensibles , Reguladores del Crecimiento de las Plantas/análisis , Ácido Abscísico/análisis , Ácido Abscísico/metabolismo , Técnicas Biosensibles/métodos , Brasinoesteroides/análisis , Brasinoesteroides/metabolismo , Ciclopentanos/análisis , Ciclopentanos/metabolismo , Citocininas/análisis , Citocininas/metabolismo , Etilenos/análisis , Etilenos/metabolismo , Colorantes Fluorescentes , Giberelinas/análisis , Giberelinas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/análisis , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Lactonas/análisis , Lactonas/metabolismo , Oxilipinas/análisis , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Plantas/química , Plantas/metabolismo
16.
PLoS One ; 15(10): e0240886, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33064769

RESUMEN

Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.


Asunto(s)
Hongos/metabolismo , Reguladores del Crecimiento de las Plantas/análisis , Cromatografía de Gases , Cromatografía Líquida de Alta Presión , Citocininas/análisis , Citocininas/metabolismo , Etilenos/análisis , Etilenos/metabolismo , Giberelinas/análisis , Giberelinas/metabolismo , Ácidos Indolacéticos/análisis , Ácidos Indolacéticos/metabolismo , Espectrometría de Masas , Micorrizas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Esporas Fúngicas/metabolismo , Simbiosis
17.
Artículo en Inglés | MEDLINE | ID: mdl-32755500

RESUMEN

The effect of post-harvest ripening by ethylene and calcium carbide was studied by headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) method. Sapota (sapodilla) fruits were ripened with ethylene gas, technical grade calcium carbide and pure calcium carbide ripeners and the samples were homogenised after complete ripening. The samples were subjected to HS-SPME-GC-MS and the obtained results showed the presence of various alcohols, aldehydes, acids, ketones and esters which were commonly present in the samples. The fruit samples ripened with technical grade calcium carbide showed the presence of 3,5-dimethyl-1,2,4-trithiolane isomers, which can be used as markers to identify sapota fruits ripened with technical grade calcium carbide. The technical grade calcium carbide contains divinyl sulphide which might have been transformed into the trithiolane isomers. These isomers were not observed in the fruits ripened with pure calcium carbide and also with ethylene gas. Hence the formation of trithiolane residues may be attributed to the presence of divinyl sulphide impurity present in calcium carbide and its conversion due to the action of ethylene releasing enzymes present in the fruits.


Asunto(s)
Acetileno/análogos & derivados , Contaminación de Alimentos/análisis , Frutas/química , Manilkara/química , Microextracción en Fase Sólida , Acetileno/análisis , Etilenos/análisis , Cromatografía de Gases y Espectrometría de Masas
18.
J Chromatogr A ; 1621: 461081, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32349863

RESUMEN

The chemical composition distribution (CCD) of three single site made ethylene/1-octene copolymers was investigated through offline-hyphenation of solvent gradient interaction chromatography (SGIC) with 1H NMR. Thus, a clear, non-linear correlation between SGIC elution time and chemical composition was found under the specific measurement conditions applied here. The application of 1H NMR as detection allowed to determine the CCD with unprecedented accuracy. 2D-LC of the copolymers revealed the correlation between CCD and molar mass distribution (MMD) in a quantitative manner. Furthermore, this approach allowed a comparison between the response behavior of an evaporative light scattering detector (ELSD, semi-quantitative, commonly applied in SGIC) and that of an infrared (IR) detector (quantitative, commonly applied in SEC). As a result, it could be shown that ELSD results are close to IR results for the system investigated here, in other words, the often-criticized semi-quantitative response behavior of the ELSD is affecting results in an acceptable manner.


Asunto(s)
Alquenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Elastómeros/análisis , Etilenos/análisis , Polienos/análisis , Calibración , Espectroscopía de Resonancia Magnética con Carbono-13 , Elastómeros/química , Peso Molecular , Espectroscopía de Protones por Resonancia Magnética , Solventes/química , Temperatura , Factores de Tiempo
19.
Int J Biol Macromol ; 156: 10-17, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32243935

RESUMEN

Ethylene (ethene, C2H4) was introduced into V-type crystalline starches (V-starches, namely V6- and V7-types) with different single helix contents (8.35-35.54%) by a solid encapsulation method. The morphological and structural properties of V-starches and their inclusion complexes (ICs) were characterized. The V-starches prepared with n-propanol (1-propanol) and ethanol showed a V6-type crystalline structure, whereas V-starches prepared with isopropanol (2-propanol) and t-butanol (2-methyl-2-propanol) exhibited V7-type crystalline structure. The ethylene concentrations in ICs followed the order of Vn-propanol > Vethanol > Visopropanol > Vt-butanol > Vmethanol, which appeared to be associated with the diameter of the V-starch single helices. Compared with V7-type starches, ethylene was more effectively encapsulated into V6-type starches with a smaller inner diameter. The controlled-release characteristics of ICs showed a diffusion-limited mechanism and first-order kinetics for ICs in different temperatures and relative humidities, respectively. Ethylene encapsulated in V6-type-ICs showed better controlled release kinetics than V7-type-ICs, except for Vt-butanol-IC, which probably resulted from residual t-butanol in the single helices interfering with the release of ethylene. V-starches (particularly V6-type) appear to be effective gas storage and release systems for ethylene and this encapsulation technology should enable precisely-controlled and targeted applications of ethylene for food processing and agricultural applications.


Asunto(s)
Etilenos/análisis , Etilenos/química , Almidón/análisis , Almidón/química , Cápsulas , Conformación de Carbohidratos , Gases/química , Humedad , Cinética , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Espectrometría Raman , Almidón/ultraestructura , Temperatura , Difracción de Rayos X
20.
Proc Natl Acad Sci U S A ; 117(12): 6349-6355, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32156732

RESUMEN

A combined analytical, theoretical, and experimental study has shown that the vaping of vitamin E acetate has the potential to produce exceptionally toxic ketene gas, which may be a contributing factor to the upsurge in pulmonary injuries associated with using e-cigarette/vaping products. Additionally, the pyrolysis of vitamin E acetate also produces carcinogen alkenes and benzene for which the negative long-term medical effects are well recognized. As temperatures reached in vaping devices can be equivalent to a laboratory pyrolysis apparatus, the potential for unexpected chemistries to take place on individual components within a vape mixture is high. Educational programs to inform of the danger are now required, as public perception has grown that vaping is not harmful.


Asunto(s)
Etilenos/análisis , Cetonas/análisis , Lesión Pulmonar , Vapeo , Vitamina E/química , Acetatos/análisis , Acetatos/química , Sistemas Electrónicos de Liberación de Nicotina , Etilenos/toxicidad , Cetonas/toxicidad , Lesión Pulmonar/inducido químicamente , Estructura Molecular , Fenoles/análisis , Fenoles/química , Pirólisis , Vapeo/efectos adversos , Vitamina E/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...